

Classes 4^{ème}sc

Durée: 3.h

A.S:2006/2007

Exercice N°1: (5pts)

$$(O,\vec{i},\vec{j},\vec{k})$$
 é tan t un repère de l'espace ξ

Soit P et Q les plans d'équations respectives : x + 2y - z + 1 = 0 et x - y - z - 2 = 0

- 1/ Montrer que P et Q sont perpendiculaires
- 2/ a) Donner une équation cartésienne de la sphère de centre I (1,2,0) et tangente à P
 - b) Montrer que S et Q sont sécants et caractériser $S \cap Q$
- $3/ \operatorname{soit} \Delta = P \cap Q$
 - a) Calculer $d(I, \Delta)$
 - b) Ecrire une équation cartésienne de la sphère S' de centre I et tangente à Δ
 - c) Donner les coordonnées du point de contact de Δ et S'

Exercice N°2: (5pts)

Soit U la suite réelle définie sur \square par :

$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{U_n}{2 + U_n} \end{cases}$$

- 1/ a) Montrer que pour tout $n \in \square$, $U_{n} \! > \! 0$
 - b) Montrer que U est décroissante
 - c) En déduire que U est convergente
- 2/ Soit V la suite réelle définie sur \square par : $V_n = \frac{U_n}{1 + U_n}$
 - a) Montrer que V est une suite géométrique de raison 2
 - b) Calculer $\,V_{\scriptscriptstyle n}\,$ en fonction de n
 - c) Trouver alors $\lim_{n\to\infty} U_n$

Problème: (10 pts)

- I- Soit g la fonction définie sur $]0,+\infty[$ par $g(x)=x^2+1-Logx$
 - 1 / Etudier les variations de g et dresser son tableau de variation
 - 2/ En déduire pour tout x de $]0,+\infty[$; g(x) > 0
- II- Soit f la fonction définie sur $\int_{0}^{\infty} 0$, $+\infty$ [par : $f(x) = x + 1 + \frac{Logx}{x}$

On désigne par ζ_f sa courbe représentative dans un plan muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

- 1/a) Montrer que f'(x) = $\frac{g(x)}{x^2}$; $\forall x \in]0,+\infty[$
 - b) Dresser tableau de variation de f
- 2/a) Montrer que la droite D : y = x + 1 est une asymptote à ζ_f
 - b) Etudier les positions de $\zeta_{\rm f}$ par rapport à D
- 3/a) Montrer que f réalise une bijection de]0,+∞ [sur un intervalle J que l'on précisera
 - b) Montrer que l'équation f(x)=0 admet une solution unique α et que $\frac{1}{e}<\alpha<\frac{1}{2}$
- 4/ Tracer D , ζ_f et $\zeta_{f^{-1}}$ dans le même repère (où f^{-1} est la fonction réciproque de f)
- 5/ Soit F une primitive de f sur $]0,+\infty[$

Montrer que F(e) – F(1) =
$$\frac{e^2 + 2e - 2}{2}$$